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What does “data-centric” mean?

Two sides to a machine learning problem: model and data

Fine-tuned model meets fine-tuned data: can we augment or
improve the available data to boost overall performance?

At NeurIPS 2022, 99% model-centric papers vs. 1%
data-centric papers
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Data-centric ideas and phases

1. Data collection, labeling, pre-processing, cleaning (1st
generation of data company)

2. Data augmentation, pruning, generation – mostly
algorithm-based (2nd generation of data company)

Increase training data volume, especially when certain class
instances are rare, e.g., patients with a rare disease in hospital
data

3. Regulation-driven: data governance issues such as bias,
fairness, and privacy

Identify operational risks, e.g., synthesize loan applicants with
diverse backgrounds to ensure fairness of AI loan decisions
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What is synthetic data?

Artificially generated data meeting designated criteria which
can be used alongside (or in place of) real data
Can be synthesized in many different ways: noise addition,
modeling marginal distributions of variables, fully generative
models (GAN, VAE, diffusion, etc.)
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Figure: Synthetic Data Projection
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Evaluating synthetic data

Fidelity: how “close” synthetic data are to the real data,
quantified using statistical measures such as KL-divergence

Utility: performance on downstream machine learning tasks

Privacy: differentially private synthetic data generation as
alternative to private ML training, especially relevant in fields
like healthcare and finance
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The need for privacy and how to measure it

Fake, synthetic data ⇒ fully private? Not necessarily...

The current “gold standard” for measuring privacy is
ε-differential privacy. In a nutshell, ε-differential privacy
prevents identification of specific individuals’ data while still
providing meaningful aggregate results.
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Auditing privacy

Say we have a synthetic data generating model, e.g., a GAN.

It is possible to fit an adversarial attack model on the data
output by the GAN to predict sensitive attributes in the
original data or even link synthetic data records back to the
original data. (GANs have notorious “data copying” problem)

Specifically, given a data record r , can determine if r was in
the model’s training dataset.
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Auditing privacy (cont.)

Auditing involves applying such adversarial attacks on our
model to quantify and investigate its robustness in terms of
privacy.

Identify instances or circumstances where the privacy promise
is violated!

Figure: Python Package for Performing Privacy Auditing
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Figure: Attack Accuracy Metrics for Different Attacks, Generators

Kim, Nick Data-centric Machine Learning



Introduction
Synthetic Data
Privacy in ML

Conclusion

A quick auditing application

Consider dataset of hospital stays and discharges for
thousands of patients in state of Texas

Natural to use synthetic data as privacy workaround – train
ML models on synthetic data instead of real data, or share
synthetic datasets between data provider and analyst

Can audit candidate generative models & answer such
questions as:

Which model best preserves privacy under different attacks?
Do the audit results reveal anything about model differences?
Are any individual records at particularly high risk of privacy
breach?
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Figure: Random vs. Outlier Targets for Texas Dataset
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Figure: Random vs. Outlier Targets for Census Dataset
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Data-centric approaches are promising for increasing
performance and robustness of machine learning systems.

Synthetic data is one popular data-centric methodology with
many benefits to data quality such as improving data volume,
fairness, privacy, etc.

Privacy in particular is a big (open) problem when it comes to
synthetic data methodology.

Using privacy auditing, we can assess the potential of different
synthetic data generation models for truly private machine
learning and safe, secure data sharing.
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Thank you!
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